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Abstract

The goal of recommender systems is to make
personalized product recommendations based
on users’ taste. As the Netflix challenge
demonstrated, one of the the most effective
way to build such systems is through matrix
factorization. Matrix factorization algorithms
utilize prior product feedback given by users
to automatically build user and product pro-
files. A product can then be recommended to
a user if the user’s profile closely matches that
of the product.

Unfortunately, most of the research in ma-
trix factorization focuses on explicit feedback
datasets, where users make their preferences
known by directly rating subsets of available
products on a fixed scale. In many real-worlds
applications, however, such direct ratings are
unavailable. Instead, implicit feedback must
be used, such as browsing history and view
counts. In this work we present a recom-
mendation algorithm which uses implicit play
frequency information to recommend artists
to the users of the Last.fm1 music website.
We demonstrate how an existing algorithm for
explicit feedback datasets can be adapted to
work with implicit data. We further evaluate
the performance of our recommendation algo-
rithm on a Last.fm dataset, investigating the
effects of regularization, normalization and
the number of features on the quality of rec-
ommendations. We also discuss the viability
of our approach in a real-world setting.

1http://www.last.fm

1 Introduction

Being able to make personalized recommendations
is beneficial both for e-commerce sites and their
users. Accurate recommendations improve cus-
tomer experience by providing users with content
they are likely to enjoy, and provide a potential for
new purchases.

Recent years have seen a rise of interest in
recommender algorithms, which can be broadly
divided into two categories. Content-basedap-
proaches work by directly building profiles for
users and products, often through explicit ques-
tionnaires and expert evaluation (Koren et al., 2009;
Hu et al., 2008). An example of such a system is the
internet radio Pandora, based on the Music Genome
Project, where each song is characterized by an ex-
tensive feature set created by a music expert. The
features, such as a song’s genre, can then be matched
with users’ preferences in order to make recom-
mendations. While sometimes successful, content-
based approaches require access to a substantial
amount of information that might be either un-
available or infeasible to obtain (Koren et al., 2009;
Hu et al., 2008).

In constrast,collaborative filteringrelies only on
past user behavior to make recommendations, with-
out the need to explicitly create profiles. Such past
behavior can include product ratings, view counts
and purchase history. One of the main appeals of
collaborative filtering is that it is domain free, yet
can address data aspects which are often elusive
and difficult to profile with content-based systems
(Koren et al., 2009).

http://www.last.fm


Within the collaborative filtering domain, two ap-
proaches are prevalent:neighborhood methodsand
latent factor models. Neighborhood methods focus
on inferring relationships between products and/or
users, and using those relationships to make recom-
mendations (Koren et al., 2009). For example, if a
user gives a high rating to the movieStar Wars, it
is reasonable to assume that they would also enjoy
Star Trek, another sci-fi movie.

Latent factor models, on the other hand, at-
tempt to characterize users and products by fea-
ture vectors automatically inferred from data
(Koren et al., 2009; Hu et al., 2008). Such feature
vectors describe users and products along multiple
dimensions, somewhat similarly to explicit profiling
in content-based systems, although the actual inter-
pretation of various features is generally irrelevant
and often impossible (Koren et al., 2009). As the
Netflix challenge demonstrated, one of the the most
effective way to build such systems is throughma-
trix factorization, the focus of this work. Matrix
factorization algorithms utilize prior item feedback
given by users to automatically build user and prod-
uct profiles. A product can then be recommended to
a user if the user’s profile closely matches that of the
product.

Unfortunately, most of the research in matrix fac-
torization focuses on high-quality explicit feedback
datasets, where users make their preferences known
by directly rating subsets of available items on a
fixed scale (Hu et al., 2008). In many real-worlds
applications, however, such direct ratings are un-
available. Instead, implicit feedback must be used,
such as browsing history and view counts. In this
work we present a recommendation algorithm which
uses implicit play frequency information to recom-
mend artists to the users of the Last.fm music web-
site. We make the following contributions:

1. We demonstrate the inadequacy of an explicit
feedback algorithm on an implicit feedback
dataset

2. We propose a straightforward modification of
an explicit feedback algorithm which signif-
icantly improves its performance on implicit
data

3. We evaluate the modified algorithm with re-

spect to regularization, number of features and
other dimensions of interest

In addition, we briefly discuss the viability of our
approach in a real-world setting, where the standard
error measures such as the root mean square error
(RMSE) are sometimes inadaquate.

2 Related Work

Many successful matrix factorization algorithms are
inspired by Sigular Value Decomposition of the
user-product rating matrixMi,j defined as:

Mij = ri,j

whereri,j is the observed rating of productj by
useri (Koren et al., 2009). The matrixM is usu-
ally sparse, with the Netflix Challenge matrix hav-
ing less than2% of all possible ratings available
(Funk, 2006). For m users andn products, a typ-
ical model decomposesM into two matricesU and
P of dimensionsf × m and f × n, respectively,
such thatM is approximated by the productUTP .
In other words, a ratingri,j is approximated by a dot
product ofui andpj in a joint latent factor space of
dimensionalityf (Koren et al., 2009):

ˆri,j = uTi pj

Parameter estimation is accomplished by min-
imizing the regularized square error between ob-
served and estimated ratings (Koren et al., 2009;
Hu et al., 2008):

min
U,P

∑

ri,j
known

(

ri,j − uTi pj
)2

+ λ
(

‖ui‖
2 + ‖pj‖

2
)

(1)
A common parameter estimation algorithm, pop-

ularized by Simon Funk, isstochastic gradient de-
scent (SGD). For each training sample, the algo-
rithm predicts the ratingri,j and computes the as-
sociated error:

ei,j = ri,j − uTi pj (2)

The algorithm then uses this error to modify
its parameters by a magnitude proportional toγ
in the direction opposite to the gradient, yielding
(Koren et al., 2009):



ui ← ui + γ · (ei,j · pj − λ · ui) (3)

pj ← pj + γ · (ei,j · ui − λ · pj) (4)

While this approach works well for explicit feed-
back datasets, it requires modification for implicit
feedback data where ratings can be uncertain. To
model uncertainty, confidence coefficientsci,j are
introduced, transforming the minimization problem
in Equation1 into (Hu et al., 2008):

min
U,P

∑

ri,j
known

ci,j
(

ri,j − uTi pj
)2

+ λ
(

‖ui‖
2 + ‖pj‖

2
)

(5)
Hu et al. propose a confidence measure which is

a linear function of the rating:

ci,j = 1 + α · ri,j

where α is a constant determined by cross-
validation. While in principle this new formulation
can be solved using Stochastic Gradient Descent
with modified update rules (Equations6 and 7),
there are practical limitations that make SGD’s use
problematic (Hu et al., 2008). In particular, Hu’s
method incorporates unobserved ratings in the learn-
ing process by treating them as 0’s with a low con-
fidence, which makes the problem dense and gra-
dient descent prohibitively expensive. Instead, Hu
uses the method ofalternating least squares, where
Equation5 is solved directly by fixing one ofU , V
and optimizing the other in turns until convergence
(Koren et al., 2009; Hu et al., 2008). The resulting
system works well, at the expense of a more compli-
cated parameter estimation algorithm and increased
runtime.

ui ← ui + γ · (ci,j · ei,j · pj − λ · ui) (6)

pj ← pj + γ · (ci,j · ei,j · ui − λ · pj) (7)

3 Implicit Music Feedback

Our work is based on implicit user feedback for a
music dataset. For each user we know the number
of times the user played songs by a given artist, but
we do not have direct ratings for that artist. As a

result, in order to use the matrix factorization ap-
proaches described earlier, ratings must be estimated
from play count information. We define play fre-
quencyfreq for a given useri and artistj to be the
user’s play count for that artist normalized by user’s
total plays:

freqi,j =
count(i, j)

∑

j′ count(i, j
′)

(8)

We also adopt the notationfreqk(i) to denote the
frequency of thek-th most listened to artist for user
i. As Figure1 shows, play frequencies have a clear
power law distribution. A rating for an artist with
rank k is computed as a linear function of the fre-
quency percentile:

ri,j = 4 ·

(

1−
k−1
∑

k′=1

freqk′(i)

)

(9)

It follows that we assign a rating in the 3-4 range
to the artists in the top 25% frequency percentile,
a rating of 2-3 to the artists in the subsequent 25%
percentile, and so on. The least frequently listened
to artists have a rating close to 0.

The formulation in Equation9 appears to trans-
form the problem into the domain of explicit feed-
back, and makes it tempting to directly use unmod-
ified algorithms from that domain. In fact, as we
show in the Experiments section, such an approach
does indeed quickly converge to a reasonable global
error, but the result is of no practical use due to the
pecularities of implicit music datasets. We describe
these pecularities, and how we deal with them, be-
low.

3.1 The Implicit Problem

One of the most significant differences between ex-
plicit and implicit feedback datasets is the distribu-
tion of ratings. In an explicit setting, the average
user only rates a reasonably small subset of prod-
ucts, and the ratings are not heavily skewed towards
one end or the other. This is in contrast to implicit
music datasets and ratings derived from play fre-
quencies, where most artists have a rating close to
0 - a consequence of a power law distribution (see
Figure1).

Such a skewed distribution has an impact on pa-
rameter estimation. A naive approach, i.e. di-



rectly optimizing Equation1, is susceptible to get-
ting stuck in a local minimum where, for each user,
all available products have a low rating. While this
is a reasonable approximation of the distribution, it
is of little practical use, since in recommender sys-
tems we are interested in identifying products a user
might actually like. We demonstrate this problem in
the Experiments section, where we apply a Stochas-
tic Gradient Descent algorithm, designed for explicit
datasets, to implicit ratings derived from a Last.fm
dataset.

3.2 Percentile Normalization

In order to deal with the skewed rating distribution,
we propose a normalization scheme which amplifies
the error (Equation2) for highly rated artists. We ac-
complish this, for each useri, by assigning all artists
to four non-overlapping bins based on the artists’
rating (which in turn is based on the frequency per-
centile, see Equation9):

B1

i = {j : 4 ≥ ri,j > 3} (10)

B2

i = {j : 3 ≥ ri,j > 2} (11)

B3

i = {j : 2 ≥ ri,j > 1} (12)

B4

i = {j : 1 ≥ ri,j > 0} (13)

We then normalize errors within each bin by the
square root of the bin’s size. Formally, we define the
percentile-normalized erroras:

enormi,j =
ri,j − uTi pj
√

‖Bt
i‖

(14)

whereBt
i is the bin to which artistj belongs for

user i. The normalization ensures that each indi-
vidual bin’s contribution to the total squared error
has approximately the same weight, regardless of the
bin’s size. To make this clearer, suppose we always
make a constant errorǫ on all samples. The total
squared error for all samples in a bint is then:

∑

ri,j∈B
t
i

(

ri,j − uTi pj
√

‖Bt
i‖

)2

=
∑

ri,j∈B
t
i

(

ǫ
√

‖Bt
i‖

)2

=

‖Bt
i‖ ·

ǫ2

‖Bt
i‖

= ǫ2
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Figure 1: Artist play frequencies as a function of rank
averaged over 47,000 Last.fm users. Frequencies have a
clear power law distribution (with a negligible standard
deviation between users), with the top 25% of all plays
belonging to only 5 artists out of an average of 500 artists
per user. The colors correspond to subsequent percentiles
of size 25%. For clarity, only the first 100 top ranked
artists are shown.

That is, the total error is the same for all bins, re-
gardless of their size.

3.3 Parameter Estimation

We estimate the user and product matricesU andP
using a variant of the Stochastic Gradient Descent
algorithm modified to work with the normalized er-
ror. For each ratingri,j and its associated user and
artist vectorsui andpj , we compute the normalized
errorenormi,j and update parameters according to:

ui ← ui + γ ·
(

enormi,j · pj − λ · ui
)

(15)

pj ← pj + γ ·
(

enormi,j · ui − λ · pj
)

(16)

We repeat the process for all ratings until conver-
gence, or until a predefined maximum number of it-
erations.

4 Experiments

We report results on a Last.fm dataset. The
dataset contains approximately 47,000 users with
play counts for all artists they ever listened to.
Since Last.fm does not itself publish datasets, we
acquired the data on a per-user basis by walking
the social graph, starting with 400 “recently active
users” as the seed. The resulting dataset contains



1,559,512 unique artists and 27,440,327 individual
play counts, and has a user-artist density of approx-
imately 0.037%.

We split the dataset into 95% training and 5% test,
and use the root mean square error (RMSE) as the
evaluation criterion:

RMSE =

∑

ri,j
known

(

ri,j − uTi pj
)2

| {ri,j known} |
(17)

4.1 Unnormalized SGD

We report the performance of a Stochastic Gra-
dient Descent algorithm, unmodified from the ex-
plicit feedback setting, applied to implicit Last.fm
data. Unless noted otherwise, we usedγ = 0.0002,
λ = 0.8 and f = 20. Figure 2 shows the con-
vergence of the error on the training and test sets.
While the final training and test errors, 0.582793 and
0.709069, respectively, are reasonably low, they are
misleading due to the high skewness of the ratings.
We broke the RMSE down by percentiles, finding
that SGD achieved an RMSE of 2.736185 for artists
in bin 1 (play frequency percentile 25%), 1.877455
for artists in bin 2 (play frequency percentile 25%-
50%), and 0.497912 for bins 3 and 4 (bottom 50%).
Clearly, unmodified SGD overfits the low ratings
due to the skewness of the distribution, making its
use as a recommendation algorithm impractical.

We were unable to overcome the strong bias for
low ratings by varying the parameters of the algo-
rithm. Figure3 shows that the cumulative RMSE
does not change when increasing the number of fea-
tures fromf = 8 to f = 128. Similarly, RMSE
errors within each bin were not affected byf either.
We conducted similar evaluations for various learn-
ing ratesλ and regularization factorsγ with sim-
ilar results. This demonstrates that the low-rating
overfitting behavior is difficult to overcome without
modifications to the algorithm.

4.2 Percentile-Normalized SGD

We report the performance of the Stochastic
Gradient Descent algorithm using the percentile-
normalized error, as described in Section3.3. Un-
less noted otherwise, we usedγ = 0.0002, λ = 0.8
andf = 20, the same as in the explicit case.

Figure 4 shows that the percentile-normalized
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Figure 2: Convergence profile of a Stochastic Gradient
Descent algorithm designed to work with explicit feed-
back on an implicit Last.fm dataset. Parameters are
γ = 0.0002, λ = 0.8 and f = 20. Final errors are
0.582793 training and 0.709069 test.

SGD does not exhibit the low-rating overfitting be-
havior. While it has a greater cumulative RMSE
compared to unnormalized SGD (0.772473 vs.
0.709069), it performs significantly better on the
top 25% (1.599034 vs. 2.736185), top 25%-50%
(1.051795 vs. 1.877455), with only a slight degra-
dation on the bottom 50% (0.736469 vs. 0.497912).

In addition, as we show in Figures5, 6 and 7,
percentile-normalized SGD responds well to varia-
tion of parameters such as the number of featuresf ,
the learning rateγ and the regularization factorλ,
potentially enabling fine-tuning for specific applica-
tions and requirements. Such fine-tuning is impossi-
ble for unnormalized SGD due to its strong overfit-
ting behavior.

5 Practical Considerations

While the experimental performance of the
percentile-normalized SGD is promising, RMSE
is limited as an evaluation metric. To evaluate the
real-world performance of our algorithm, we used
it to make rcommendations to a small number of
friends. The feedback we gathered was mixed.
While the algorithm did recommend artists that
our friends enjoyed, it also made a lot of spurious
recommendations. For example, it would often
recommend little known foreign artists.

Upon a closer analysis, we found that a great ma-
jority of spurious recommendations was of a partic-
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Figure 3: RMSE as a function of features for a Stochastic
Gradient Descent algorithm designed to work with ex-
plicit feedback on an implicit Last.fm dataset. Parame-
ters areγ = 0.0002, λ = 0.8. The number of features
has a negligible effect on the error, both global (shown)
and within bins (not shown).
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Figure 4: Cumulative and percentile RMSE attained by
SGD with and without the percentile-normalized error.
Parameters for both algorithms areγ = 0.0002, λ = 0.8
andf = 20. SGD with normalized error has a greater
cumulative RMSE (0.772473 vs. 0.709069), but per-
forms significantly better on the top 25% (1.599034 vs.
2.736185), top 25%-50% (1.051795 vs. 1.877455), with
only a slight degradation on the bottom 50% (0.736469
vs. 0.497912).
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Figure 5: Training and test errors of the percentile-
normalized Stochastic Gradient Descent algorithm for
different numbers of featuresf . The performance of the
algorithm improves as the number of features increases.
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Figure 6: Training and test errors of the percentile-
normalized Stochastic Gradient Descent algorithm for
different learning ratesγ. The (limited) overfitting be-
havior can be controlled by varyingγ.
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Figure 7: Training and test errors of the percentile-
normalized Stochastic Gradient Descent algorithm for
different regularization parametersλ.

ular type. Namely, the system would recommend
artists that very few Last.fm users listened to. We
suspect the feature vectorspj for such artists over-
fit the few users who did listen to them, and did not
represent the artists’ true qualities. This intuition is
supported by the update rules in Equations15 and
16 - a given artist’s feature vector is only updated
for each observed rating.

To overcome this behavior, we changed the algo-
rithm to only recommend artists with a total of more
that 2000 plays by at least 20 users. This ensured
that the feature vectorspj for those artists did not
considerably ovefit any particular user. While we set
these thresholds arbitrarily, we discovered that they
significantly improved the quality of recommenda-
tions.

6 Conclusions

We have demonstrated that a standard Stochastic
Gradient Descent algorithm designed for explicit
feedback datasets does not work with implicit mu-
sic data. We proposed a variant of the SGD algo-
rithm that uses thepercentile-normalized error, and
demonstrated its superior performance on a large
Last.fm dataset. We further evaluated the perfor-
mance of our algorithm as a function of the number
of features, the learning rate and the normalization
factor, showing that it can be fine-tuned if required.
We also performed a limited evaluation of the algo-
rithm in a real world setting, discovering problems
not evident from RMSE-only evaluations.

There is a number of areas that warrant future
work. First, it would be worthwile to investigate
how well our approach generalizes to other im-
plicit datasets. Second, we would be interested
in a larger real-world evaluation of the percentile-
normalized SGD, where recommendations are made
to real Last.fm users who are then asked for feed-
back. Finally, our approach could be used with
other matrix factorization algorithms such as Alter-
nating Least Squares, by substituing the percentile-
normalized error.

A Implementation details

We have made our implementation available under
the GPLv3 license on the author’s website2. Per
Last.fm’s Terms of Service, we were unable to dis-
tribute the dataset with the code. However, we pro-
vided the tools to automatically build such a dataset
given a Last.fm API key which can be obtained at
http://www.last.fm/api.
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